天任考研小编为大家整理了“26考研数学线性代数备考行列式的简单分析”相关内容,为考研的考生们提供指导。更多有关考研知识点可关注报考指南栏目。
行列式是线性代数中的基本运算。该部分单独出题情况不多,很多时候,考试将其与其它知识点(矩阵、线性方程组、特征值与特征向量等)结合起来考查。行列式的重点是计算,包括数值型行列式、抽象型行列式和含参数行列式的计算。
结合考试分析,建议考生从行列式自身知识、与其它知识的联系这两方面来把握该部分内容。具体如下:
1. 行列式自身知识
考生应在理解定义、掌握性质及展开定理的基础上,熟练掌握各种形式的行列式的计算。行列式计算的基本思路是利用性质化简,利用展开定理降阶。常见的计算方法有:“三角化”法,直接利用展开定理,利用范德蒙行列式结论,逆向运用展开定理。
2. 行列式与其它知识的联系
行列式与其它知识(线性方程组的克拉默法则、由伴随矩阵求逆矩阵、证明矩阵可逆、判定n个n维向量线性相关(无关)、计算矩阵特征值、判断二次型的正定性)有较多联系。考生应准确把握这些联系,并灵活运用。
以上是天任考研小编为大家带来的“26考研数学线性代数备考行列式的简单分析”,希望考生们都能备考顺利,考上自己心仪的院校。想了解更多考研备考相关内容请关注报考指南栏目。