十九年专注考研辅导
因为专注,所以出色

0371-60904200 全国咨询热线服务
您所在的位置: 首页 > 报考指南 > 正文
报考指南

26考研数学线性代数矩阵对角化解析

来源:天任考研  |  更新时间:2025-05-15 10:48:50  |  关键词:

  •  
  •  
  •  

26考研数学线性代数矩阵对角化解析

天任考研小编为大家整理了“26考研数学线性代数矩阵对角化解析”相关内容,为考研的考生们提供指导。更多有关考研知识点可关注报考指南栏目。

 

 

首先是矩阵对角化的概念:对于n阶矩阵A,若存在一个n阶可逆矩阵P,使P-1AP=Λ(Λ为对角矩阵)成立,则称A可相似对角化,否则就称A不可对角化。概念是要牢记于心的。

  重要定理:若n阶矩阵A可以对角化,则对角矩阵Λ的n个主对角线元素必是A的n个特征值λ1,λ2,…,λn(包括重根),其相似变换矩阵P的n个列向量X1,X2,…,Xn是A的分别属于λ1,λ2,…,λn的特征向量,且X1,X2,…,Xn线性无关,即有:P-1AP=Λ,其中Λ=diag(λ1,λ2,…,λn),P=(X1,X2,…,Xn)为可逆阵,且AXj=λXj(j=1,2,…,n).

  并非所有的n阶矩阵都可对角化,只有满足一定条件的矩阵才可对角化,下面是几个相关结论:

  结论1:n阶矩阵A可以对角化的充分必要条件是A有n个线性无关的特征向量。

  结论2:若n阶矩阵A有n个两两不同的特征值,则A必可对角化。

  结论3:设λi是矩阵A的任一个特征值,其代数重数为ni(即λi是ni重特征值),其几何重数为mi(即属于λi的线性无关的特征向量的最大个数,也是齐次线性方程组(λiE-A)X=0的基础解系中的向量个数,mi=n-r(λiE-A)),则恒有mi≤ni。

  结论4:设n阶矩阵A的两两不等的特征值为λ1,λ2,…,λs(1≤s≤n),则矩阵A可对角化的充分必要条件是,对A的每一个特征值λi,都有mi=ni(i=1,2,…,s)。

 

以上是天任考研小编为大家带来的“26考研数学线性代数矩阵对角化解析”,希望考生们都能备考顺利,考上自己心仪的院校。想了解更多考研备考相关内容请关注报考指南栏目。


免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。邮箱:zzqihangpx@163.com 电话:0371-60903400

天任考研微信群

扫码加入2026考研群
获取考研咨询一对一服务


热报课程

报考信息


备考指南


报名咨询电话:0371-60904200
Copyright©2006-2020  郑州市天任教育科技有限公司 豫ICP备2024092498号

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。电话:0371-60904200