十九年专注考研辅导
因为专注,所以出色

0371-60904200 全国咨询热线服务
您所在的位置: 首页 > 考研互动 > 考研常识 > 正文
考研常识

2025年考研考试大纲-数学二之线性代数,考研考数学二线性代数的同学收藏必看

来源:天任考研  |  更新时间:2025-12-22 10:11:55  |  关键词:

  •  
  •  
  •  

2025年考研考试大纲-数学二之线性代数,考研考数学二线性代数的同学收藏必看

2025年数学二考试大纲

考试科目:高等数学、线性代数

考试形式和试卷结构

一、试卷满分及考试时间

试卷满分为150分,考试时间为180分钟.

二、答题方式

答题方式为闭卷、笔试.

三、试卷内容结构

高等数学 约80%

线性代数 约20%

四、试卷题型结构

单项选择题10小题,每小题5分,共50分

填空题6小题,每小题5分,共30分

解答题(包括证明题)6小题,共70分

线性代数

一、行列式

考试内容

行列式的概念和基本性质行列式按行(列)展开定理

考试要求

1.了解行列式的概念,掌握行列式的性质。

2.会应用行列式的性质和行列式按行(列)展开定理计算行列式。

二、矩阵

考试内容

矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价分块矩阵及其运算 

考试要求

1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质。

2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质。

3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。

4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法。

5.了解分块矩阵及其运算。 

三、向量

考试内容

向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的的正交规范化方法 

考试要求

1.理解n维向量、向量的线性组合与线性表示的概念。

2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法。

3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩。

4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系。

5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法。

四、线性方程组

考试内容

线性方程组的克拉默(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解

考试要求

1.会用克拉默法则。

2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件。

3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法。

4.理解非齐次线性方程组的解的结构及通解的概念。

5.会用初等行变换求解线性方程组。

五、矩阵的特征值和特征向量

考试内容

矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵

考试要求

1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量。

2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法。

3.掌握实对称矩阵的特征值和特征向量的性质。

六、二次型

考试内容

二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性

考试要求

掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理。

掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准型。

3.理解正定二次型、正定矩阵的概念,并掌握其判别法。

在线报名申请表
免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。邮箱:zzqihangpx@163.com 电话:0371-60903400

天任考研微信群

扫码加入2026考研群
获取考研咨询一对一服务


热报课程

报考信息


备考指南


报名咨询电话:0371-60904200
Copyright©2006-2020  郑州市天任教育科技有限公司 豫ICP备2024092498号

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。电话:0371-60904200