十九年专注考研辅导
因为专注,所以出色

0371-60904200 全国咨询热线服务
您所在的位置: 首页 > 考研互动 > 考研辅导班 > 正文
考研互动

唐山市住宿考研自习室自习室、集密训营、面授机构、线下机构

来源:天任考研  |  更新时间:2024-03-04 11:33:02  |  关键词:

  •  
  •  
  •  
考研机构室推荐

天任考研,始创于2006年,专注考研

学习方面:学习环境上我们配有敞亮美好的教室,每个教室都配有空调,每位学生配有独立桌椅,每个桌椅旁边就有固定插排,有区域无线网覆盖,教室按照文理分班等;学习进程上面配有不同的班次比如高三自习班/刷题答疑班/精讲班/寄宿一对一,每个班次的区别详情咨询本人或留言哦~

住宿方面:标准的六人间,每位同学配有相应桌椅和衣柜,每个宿舍都配有空调、独立卫生间、专用洗衣机和洗漱台,厕所还有供暖系统,还有宿舍老师24小时值班!

加右侧微信详细咨询!         

        选择辅导班不能贪多。在确定辅导班的时候,大家一定要注意,不能因为害怕学不好,或者是盲目跟风,就胡子眉毛一把抓,同时报几个辅导班。对于考研学子来说,精力和时间都是十分有限的,另外每家辅导机构的授课体系和理念都不同,同时学习容易产生很多的问题。报班太多对于复习效率来说,坏处是多过好处的。最好选定一家机构,选报不同阶段的班型。 


       下面为大家介绍一下相关内容!


  一、考研机构都有哪些:

  1、天任考研天任考研成立于2006年,以成为大学生教育服务机构为目标,经过20年的发展已经成长为大学生考研辅导驰名品牌,在考研政治、考研英语、考研数学等考研学科领域均有一定权威。

  2、中公考研:中公考研是北京中公未来教育咨询有限公司旗下子品牌,中公考研是为广大考研学子提供复习辅导课程,包括考研乐学系列、魔鬼集训营、VIP1对1、考研微课等系列产品。

  3、新东方考研:新东方在线是新东方教育科技集团旗下的专业在线教育平台,也是国内首批专业在线教育网站之一。提供出国留学、考研培训、英语培训和职业教育培训的综合网络教育培训机构。

  4、海文考研:北京万学教育集团旗下海文考研是中国研究生考前培训事业的创始和领袖机构,在考研培训方面具备较好的口碑。在研究生入学考试、公务员招录考试和职业发展等主力培训项目方面做的都比较好。

  5、海天考研:海天教育较早开始考研专业课辅导,同时也侧重考研公共课;最初由辅导考研政治打开名声,擅长开展大规模的专业课集训模式辅导;师资较为丰富,具有良好的教学维护水平。

  二、考研自习室都有哪些:

  1、天任寄宿考研:整体环境及周边配置比较好;宿舍环境很不错,交通便利;班主任进行每日考勤,半封闭式管理,周一到周六上午需请假才可外出。

  2、心专注:价格便宜,学习氛围好,公用洗衣机,不是很卫生,饭菜质量不行,每个班配有对应的班主任,积分量化考核。

  3、考虫寄宿考研:每天有教务老师早晚班查考勤,执行请假制度,门卫严格查岗,严禁外来人员进入学生指纹识别方可进入,不允许串班。

  4、新硕:班主任进行每日考勤,封闭管理,周一到周五只有请假才可外出,周末凭出入证进出学校。

  5、万硕考研自习室,自习室的环境很不错,有专门的保洁,干净卫生,有什么问题找工作人员也能解决。学习氛围非常nice,服务也很人性化,教室里有花茶,办公室里还有小零食。

  三、为什么这么考研人要选集训营、有什么好处:

  1、给文化课相对较差的高考考生,一个考入本科院校的机会,只要专业课分高,文化课分可以低一些,也会被A类院校录取。

  2、帮助考生树立信心,克服浮躁。集训时,除了吃饭睡觉,基本上都呆在画室里,看着自己的创作水平一天天的提高,人也会变得越来越自信。

  四、寄宿考研集训营价格:

  按照目前的市场价格,服务比较周全(公共课+专业课+督学管理+面试指导等)的考研全程班价格大约在2.5万元-3.5万元之间,单科班大约在1万-1.5万元之间,两科班大约在2万元左右,政治+英语+数学的公共课三科班大约在2.1万-2.6万元之间。

  五、考研封闭培训班价格:

  1、应届生考研面授班这类考研辅导班基本上都在众多高校附近,因为离学校较近,所以作为考研应届生是最合适不过的了。基本上都是以周末走读上课为主,因为周中学校还有自己的课程要做。课程价格总体上维持在2W~4W不等,从单科到全科辅导基本上都包含在内了。

  2、在职类考研面授班这类考研辅导班是针对社会人士最好的选择,由于工作和生活的关系,在考试难度和分值方面,这类机构会给到职场人士最好的建议和规划,价格总体上在2W~4W不等,如果有其他的个性化需求,价格就是另谈了。主要也是以周末走读班或者线上课程为主。

  3、二战/三战/多战考研集训营说到这类机构,很多家长和学生都不是很了解,由于学员基本都是考研二战,所以面临着毕业了但是有没有工作,所以要提供配套的吃、住、学集一体的封闭式全日制学习中心。也需要有自建的公寓、食堂、教学区、自习区,所以不会像其上面两类考研辅导机构那样在学校周边到处都是。一般就是个缩小版的大学环境,所以基本上都是每个城市一个学习中心。

集美大学数学分析2023年硕士研究生入学考试初试自命题考试大纲已出,为帮助考生明确考试复习范围和有关要求,特制定出本考试大纲。本考试大纲适用于报考集美大学2023考研学子,一起关注。

2023考研政治十页纸冲刺带背营~

集美大学2023年硕士研究生入学考试初试自命题考试大纲

考试科目代码:[622]

考试科目名称:数学分析

一、考试目标

(一)考查考生对数学分析的基本概念、基本理论、基本方法和基本计算的理解和掌握程度。

(二)考查考生的基本计算能力,逻辑推理能力,抽象思维能力,分析和解决实际问题的综合能力。

二、试卷结构

(一)考试时间:180分钟,满分:150分。

(二)题型结构

1、计算题:6小题,每小题12分,共72分。

2、讨论题:2小题。每小题15分,共30分。

3、证明题:4小题,每小题12分,共48分。

三、答题方式

闭卷笔试。

四、考试内容

(一)一元函数微积分学部分,38%(57分)

1、分析引论

考试内容:

函数初等特性;基本初等函数;初等函数;常见分段函数;数列、函数极限分析定义;左、右极限;无穷小与无穷大定义;无穷小的比较;极限一般性质、四则运算和复合运算性质;极限存在判定准则;求极限方法;函数的连续性;间断点及分类;函数一致连续性及判定法;闭区间上连续函数4条性质;上(下)确界、上(下)极限、聚点概念;实数完备性的7个等价描述。

考试要求:

(1) 掌握函数初等特性和基本初等函数及其图形。

(2) 理解变量极限及连续的概念,会判定极限的存在性,会证明数列的收敛性,掌握求极限的基本方法。

(3) 掌握函数一致连续性的论证方法,掌握闭区间上连续函数的基本性质及其应用。

(4) 理解上(下)确界和数列上(下)极限概念,了解实数完备性的等价命题。

2、一元函数微分学

考试内容:

导数概念及几何意义;导数四则、复合、反函数运算法则;隐函数、参量函数求导方法;微分概念及几何意义;微分四则运算法则;高阶导数;高阶微分;求导数或微分;Fermat引理;Rolle、Lagrange和Cauchy中值定理;两种余项形式的Taylor公式;洛必塔法则;函数单调性、凹凸性及判定法;函数极值点、拐点及判定法;曲线渐近线与作图。

考试要求:

(1)理解导数和微分的概念,掌握导数与微分、高阶导数的计算方法。

(2)掌握微分中值定理、Taylor公式(两种余项形式)及其应用。掌握不等式证明的微分学方法。

(3)会用导数判定函数的几何性态。

3、一元函数积分学

考试内容:

原函数概念;不定积分及性质;定积分概念;可积性判定准则;可积的充分条件;定积分性质;定积分中值定理;变限积分函数及性质;原函数存在性;微积分学基本定理;换元积分法;分部积分法;不定积分计算法;定积分计算法;定积分在几何上应用。

考试要求:

(1)理解原函数、定积分的概念,了解可积性判定准则。掌

握积分计算方法。

(2)掌握定积分的基本性质,掌握变限积分求导公式,掌握

微积分学基本定理及其应用。

(3)会用微元法解决实际问题。

(二)多元函数微积分学部分,32%(48分)

1、多元函数微分学

考试内容:

多元函数概念;重极限与累次极限;重极限存在性判定与求法;多元函数连续性及性质;偏导数、方向导数与全微分概念;一阶全微分形式不变性;高阶偏导数;二元函数微分中值定理;偏导数计算法;链锁法则;隐函数(组)存在性及求导法;偏导数在几何上应用;多元函数极值及判定法;条件极值与Lagrang乘数法;多元函数最大(小)值的确定。

考试要求:

(1)会判定重极限的存在性,理解多元函数连续、偏导数、全微分、方向导数的概念及相互联系。

(2)掌握偏导数(高阶偏导数)的计算方法,掌握隐函数的求导方法,掌握微分学在几何上的应用,

(3)掌握多元函数极值的判定法,会用Lagrang乘数法解决实际问题。

2、多元函数积分学

考试内容:

二、三重积分概念与性质;重积分累次积分法、极坐标法、截面积分法、柱面坐标法、球面坐标法、一般变量替换法;两类曲线积分概念、性质及联系;两类曲线积分计算法;Green公式;两类曲面积分概念、性质及联系;两类曲面积分计算法;奥高公式;Stokes公式;平面曲线积分与路径无关的等价命题;各类积分在几何上的应用;场论初步(梯度场、散度场、旋度场)。

考试要求:

(1)理解重积分、曲线积分、曲面积分的概念及其几何或物理意义,掌握它们的基本性质。

(2)掌握二重、三重积分的基本计算方法,掌握两类曲线积分、曲面积分的相互联系和计算方法。

(3)掌握Green公式、奥高公式及其应用,掌握平面曲线积分与路径无关的等价命题,了解Stokes公式及场论。

(三)无穷级数论与反常积分部分,30%(45分)

1、无穷级数论

考试内容:

常数项级数敛散性及性质;正项级数审敛法;任意项级数审敛法;绝对收敛与条件收敛;函数项级数相关概念;函数列(级数)一致收敛性及判别法;函数列(级数)的分析运算性质;幂级数收敛半径;Abel第一、第二定理;幂级数分析性质;5个重要Maclaurin展开式;Riemann引理;Fourier级数的收敛性定理;Fourier变换;函数展开成幂级数;函数展开成Fourier级数或正弦、余弦级数;级数求和问题。

考试要求:

(1)理解绝对收敛和条件收敛概念,掌握正项级数和任意项级数的各种审敛法。

(2)理解函数列(函数项级数)一致收敛性概念,掌握一致收敛判别法,掌握函数列(函数项级数)的分析性质。

(3)会将函数展开成幂级数或Fourier级数,掌握幂级数的求和方法。

2、反常积分与含参变量积分

考试内容:

两类反常积分敛散性及性质;反常积分审敛法;绝对收敛与条件收敛;两类反常积分的联系;含参变量积分(反常积分)函数的概念;含参量积分函数的分析性质;含参量变限积分函数的求导法则;含参变量反常积分一致收敛性及判别法;含参量反常积分函数分析运算性质;反常积分(含参变量积分)计算法。

考试要求:

(1)理解两类反常积分敛散性的概念与性质,掌握反常积分的各种审敛法,会计算简单的反常积分。

(2)理解含参变量积分(反常积分)函数的概念及分析性质,掌握含参变量反常积分一致收敛判别法。

五、主要参考书目

(一)《数学分析》,欧阳光中等编,高等教育出版社,2018年,第四版。

(二)《数学分析讲义》,刘玉琏等编,高等教育出版社,2011年,第五版。

(三)《数学分析》,华东师大编,高等教育出版社,2019年,第五版。

原标题:数学分析

文章来源:http://zsb.jmu.edu.cn/info/1266/2308.htm

-- 扫码下载考试大纲解析 --

相关推荐:

各省市研招院校2023年硕士研究生招生简章汇总

各省市考研院校2023年硕士研究生招生专业目录汇总

各省市考研院校2023年硕士研究生招生参考书目汇总

考研各地区-各学科培训辅导介绍-申请免费试听

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。邮箱:zzqihangpx@163.com 电话:0371-60903400
天任考研微信群

扫码加入2026考研群
获取考研咨询一对一服务


热报课程

报考信息


备考指南


报名咨询电话:0371-60904200
Copyright©2006-2020  郑州市天任教育科技有限公司 豫ICP备2024092498号

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。电话:0371-60904200