一个好的考研导师应该具备专业的知识和丰富的经验,能够帮助考生解决各种学术问题。同时,他们还应该具备良好的人品和品德,能够为考生树立榜样,引导考生正确的人生观和价值观。天任考研小编已经整理好【郑州大学数学与统计学院研究生导师杨志坚教授简介 郑大杨志坚教授老师教学理念】的内容,一起来看看吧!
研究方向:非线性发展方程、无穷维动力系统
Email: yzjzzvt@zzu.edu.cn, yzjzzut@tom.com
个人简介
1975.9—1978.7河南师范大学数学系学习, 1978.7本科毕业。
1997.9—2000.7郑州大学数学系博士研究生, 2000.7毕业, 获理学博士学位。
2004.9—2005.7 大连外国语学院教育部出国留学人员培训部学习日语。
2005.10—2006.10 日本九州大学数理学研究院访问教授 , 2006.9获九州大学数理学博士学位。
2000.9—至今 郑州大学数学系教授(二级), 博士生导师, 河南省跨世纪学术、技术带头人, 河南省数学会常务理事。现任美国 《Mathematical Reviews》评论员,《Journal of Partial Differential Equations》编委,河南省高校数学教学指导委员会副主任。
科研课题
1.国家自然科学基金资助项目《非线性高阶发展方程的整体适定性和长时间动力学行为》2017.1—2020.12.
2. 国家自然科学基金资助项目《非线性高阶发展方程中的若干问题》2013.1—2016.12.
3.国家自然科学基金资助项目《非线性高阶发展方程的理论及其应用》2010.1—2012.12.
4.河南省基础与前沿技术研究计划项目:《非线性高阶发展方程的长时间行为研究》2009.1—2011.12.
5.国家留学基金委员会“中国政府派遣研究员项目”《非线性高阶发展方程的渐近行为》2005.10--2006.10.
主要论文
2019
1、Zhijian Yang*, Pengyan Ding, Xiaobin Liu, Attractors and their stability on Boussinesq type equations with gentle dissipation, Comm. Pure Appl. Anal.,18 (2) ( 2019) 911-930.
2、Pengyan Ding, Zhijian Yang*, Attractors for the strongly damped Kirchhoff wave equation on R^N, Comm. Pure Appl. Anal., 18 (2) (2019) 825-843.
3、Zhijian Yang*, Fang Da, Stability of attractors for the Kirchhoff wave equation with strong damping and critical nonlinearities, J. Math. Anal. Appl. 469(2019) 298–320.
4、Yanan Li, Zhijian Yang*, Fang Da, Robust attractors for a perturbed non-autonomous extensible beam equation with nonlinear nonlocal damping, Discrete Contin. Dyn. Syst.-A 39(2019) 5975-6000.
5、Zhijian Yang, Yanan Li, Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations, Discrete Contin. Dyn. Syst.- B 24 (2019) 4899-4912.
6、Zhiming Liu, Zhijian Yang*, Global attractor of multi-valued operators with applications to a strongly damped nonlinear wave equation without uniqueness, Discrete Contin. Dyn. Syst.- B, 24 (2019) doi:10.3934/dcdsb.**.
7、丁鹏燕, 杨志坚*, 赵雅娟, 具结构阻尼的拟线性薄膜方程的吸引子及其上半连续性, 中国科学: 数学 2019年第48卷.
8、Zhijian Yang*, Na Feng, Yanan, Li, Robust attractors for a Kirchhoff-Boussinesq type equation, Evolution Equation and Control Theory, 2019.
2018
1、Zhijian Yang, Zhiming Liu, Stability of exponential attractors for a family of semilinear wave equations with gentle dissipation, J. Differential
Equations 264 (2018)3976–4005.
2、Zhijian Yang,Yanan Li,Criteria on the existence and stability of pullback exponential attractors and their applications to non-autonomous
Kirchhoff wave models, Discrete Contin. Dyn. Syst., 38 (2018)2629-2653.
3、Zhijian Yang, Zhiming Liu, Global attractor of the quasi-linear wave equation with strong damping,J. Math. Anal. Appl. 458 (2018) 1292–1306.
4、 Pengyan Ding, Zhijian Yang*, Yanan Li,Global attractor of the Kirchhoff wave models with strong nonlinear damping, Applied Mathematics
Letters 76 (2018)40–45.
2017
1、Zhijian Yang, Zhiming Liu,Longtime dynamics of the quasi-linear wave equations with structural damping and supercritical nonlinearities, Nonlinearity 30 (2017) 1120–1145
2、Zhijian Yang, Zhiming Liu, Global attractor for a strongly damped wave equation with fully supercritical nonlinearities:, Discrete Contin. Dyn. Syst.:A, 37 (2017) 2181-2205.
3、Zhijian Yang, Zhiming Liu, Upper semicontinuity of global attractors for a family of semilinear wave equations with gentle dissipation, Applied Mathematics Letters 69 (2017) 22–28.
4、Zhijian Yang, Pengyan Ding, Longtime dynamics of Boussinesq type equations with fractional damping, Nonlinear Analysis 161 (2017) 108–130
5、Pengyan Ding, Zhijian Yang, Yanan Li,Global attractor of the Kirchhoff wave models with strong nonlinear damping,Applied Mathematics Letters 76 (2018) 40–45.
2016
1、Zhijian Yang, Pengyan Ding, Longtime dynamics of the Kirchhoff equation with strongdamping and critical nonlinearity on R^N , J. Math. Anal. Appl. 434(2016) 1826-1851.
2、Zhijian Yang, Pengyan Ding, Lei Li,Longtime dynamics of the Kirchhoff equations with fractional damping and supercritical nonlinearity,J. Math. Anal. Appl. 442 (2016) 485–510
3、Zhijian Yang, Zhiming Liu, Na Feng,Longtime behavior of the semilinear wave equation with gentle dissipation,Discrete Contin.Dyn. Syst.: A36, 2016doi:10.3934/dcds.**
2015
1、Zhijian Yang, Zhiming Liu,Exponential attractor for the Kirchhoff equations with strong nonlinear damping and supercritical nonlinearity, Applied Mathematics Letters 46 (2015) 127–132.
2、Zhijian Yang, Zhiming Liu,Panpan Niu, Exponential attractor for the wave equation with structural damping and supercritical exponent, Communications in Contemporary Mathematics, (2015) ** (13 pages).
3、Zhijian Yang, Na Feng, To Fu Ma, Global attractor for the generalized double dispersion equation, Nonlinear Analysis 115 (2015) 103–116.
4、L.H.Fatori, M.A.Jorge Silva, T.F.Ma, Zhijian Yang, Long-time behavior of a class of thermoelastic plates with nonlinear strain, J. Differential Equations 259 (2015) 4831–4862.
2014
1、Zhijian Yang, Pengyan Ding, Zhiming Liu,Global attractor for the Kirchhoff type equations with strong nonlinear damping and supercritical nonlinearity,Applied Mathematics Letters 33 (2014) 12–17
2、Ke Li and Zhijian Yang, Asymptotic behavior for the singularly perturbed damped Boussinesq equation, Mathematical Methods in the Applied Sciences, 2014
2013
1、杨志坚,On an extensible beam equation with nonlinear damping and source terms, J. Differential Equations, 254 (2013) 3903–3927.
2、杨志坚, Longtime dynamics of the damped Boussinesq equation, J. Math. Anal. Appl. 399 (2013) 180–190.
3、李珂,杨志坚, Exponential attractors for the strongly damped wave equation, Applied Mathematics and Computation 220 (2013) 155–165.
4、杨志坚, 李珂, Longtime dynamics for an elastic waveguide model, Dynamical Systems (2013) 797-806.
2012
1、杨志坚, Finite-dimensional attractors for the Kirchhoff models with critical exponents, J. Mathematical Physics, 53 (2012) 032702.
2011
1、杨志坚, A global attractor for the elastic waveguide model in , Nonlinear Analysis 74 (2011) 6640–6661.
2、杨志坚, 李晓, Finite-dimensional attractors for the Kirchhoff equation with a strong dissipation, J. Math. Anal. Appl. 375 (2011) 579–593.
2010
1、杨志坚, 王云青, Global attractor for the Kirchhoff type equation with a strong dissipation, J. Differential Equations 249 (2010) 3258–3278.
2、杨志坚, Global Attractors and Their Hausdorff Dimensions for A Class of Kirchhoff Models, J. Mathematical Physics, 51, 1 2010, 032701 -1-17.
3、杨志坚, Finite-dimensional attractors for the Kirchhoff models, J. Mathematical Physics, 51 (2010) 092703 -1-25.
4、宋长明, 杨志坚, Existence and nonexistence of global solutions to the Cauchy problem for a nonlinear beam equation, Math. Meth. Appl. Sci. 2010, 33 563–575
2009
1、杨志坚, 靳宝霞, Global attractor for a class of Kirchhoff models, J. Mathematical Physics, 2009, 50 (3) 032701-1-29.
2、杨志坚, Global attractor for a nonlinear wave equation arising in elastic waveguide model, Nonlinear Analysis 70 (2009) 2132–2142.
3、杨志坚, Longtime behavior for a nonlinear wave equation arising in elasto-plastic flow, Mathematical Methods in the Applied Sciences, 32: 1082-1104 (2009)
4、宋长明, 杨志坚, Global solution to the Cauchy problem of the nonlinear double dispersive wave equation with strong damping, Dynamics of PDE, 6: 4, 367-383, 2009
2008
1、杨志坚, 郭柏灵, Cauchy problem for the multi-dimensional Boussinesq type equation, Journal of Mathematical Analysis and Applications, 2008, 340: 64-80.
2007
1、杨志坚, Longtime behavior of the Kirchhoff type equation with strong damping on, J. Differential Equations, 2007, 242: 269-286.
2、M. Nakao, 杨志坚, Global attractors for some quasi-linear wave equations with a strong dissipation, Advan. Math. Sci. Appl. 2007, 17: 87-106.
2006
1、杨志坚, Cauchy problem for quasi-linear wave equations with viscous damping, Journal of Mathematical Analysis and Applications, 2006, 320: 859-881.
2、杨志坚, Cauchy problem for a class of nonlinear dispersive wave equations arising in elasto-plastic flow, Journal of Mathematical Analysis and Applications, 2006, 313: 197-217.
2005
1、杨志坚, Viscous solutions on some nonlinear wave equations, Nonlinear Analysis 2005, 63: e2607-e2619.
2004
1、杨志坚, Cauchy problem for quasi-linear wave equations with nonlinear damping and source terms, Journal of Mathematical Analysis and Applications, 2004, 300: 218-243.
2003
1、杨志坚, Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equation with dissipative term, J.Differential Equations, 2003, 187: 520-540.
2、杨志坚, 王霞, Blowup of solutions for improved Boussinesq type equation, Journal of Mathematical Analysis and Applications, 2003, 278: 335-353.
3、杨志坚, 王霞, Blowup of solutions for the “bad” Boussinesq-type equation, Journal of Mathematical Analysis and Applications, 2003, 285: 2, 282-298.
4、杨志坚, 陈国旺, Global existence of solutions for quasi-linear wave equations with viscous damping, Journal of Mathematical Analysis and Applications, 2003, 285: 2, 606-620.
5、杨志坚, Initial boundary value problem for a class of nonlinear strongly damped wave equation, Mathematical Methods in the Applied Sciences, 2003, 26 (12): 1047-1066.
2002
1、杨志坚, On local existence of solutions of the initial boundary value problem of the “bad” Boussinesq type equation, Nonlinear Anal. 2002, 51(7): 1251-1263.
2、杨志坚, Existence and asymptotic behavior of solutions for a class of quasi-linear evolution equations with nonlinear damping and source terms, Mathematical Methods in the Applied Sciences, 2002, 25: 795-814.
3、杨志坚, Blowup of solutions for a class of evolution equations with nonlinear damping and source terms, Mathematical Methods in the Applied Sciences, 2002, 25: 825-833.
2000
1、陈国旺, 杨志坚, Existence and non-existence of global solutions for a class of non- linear wave equations, Mathematical Methods in the Applied Sciences, 2000, 23: 615-631.
2、杨志坚, Existence and nonexistence of global solutions to a generalized modification of the improved Boussinesq equation, Mathematical Methods in the Applied Sciences, 1998, 21: 1467-1477.
3、杨志坚, 宋长明, Blowup of solutions for a class of quasi-linear evolution equations, Nonlinear Analysis, 1997, 28: 2017-2032.
4、陈国旺, 邢家省, 杨志坚, Cauchy problem for generalized IMBq equation with several variables, Nonlinear Analysis, 1996, 26: 1255-1270.
获奖情况
1、《流体力学与粘弹性力学中的非线性模型方程》 获得2000年河南省科技进步二等奖 .
2、 《非线性高阶发展方程--物理与力学中的若干模型方程》 获得1997年化学工业部科技进步三等奖.
3、《Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equation with dissipative term》2004年获河南省教育厅科技论文一等奖。
4、《Blowup of solutions for the “bad” Boussinesq-type equation》2004年获河南省教育厅科技论文一等奖。
5、《具强耗散的Kirchhoff型方程的整体吸引子》2011年获得河南省首届自然科学学术奖一等奖。
6、《Global solution to the Cauchy problem of the nonlinear double dispersive wave equation with strong damping》2011年 获得河南省首届自然科学学术奖一等奖。
7、《数学与应用数学特色专业建设的研究与实践》获得2013年河南省教学成果二等奖。
8、《Finite-dimensional attractors for the Kirchhoff equation with a strong dissipation》2013年获得河南省第二届自然科学学术奖一等奖。
以上是天任考研为考生整理【郑州大学数学与统计学院研究生导师杨志坚教授简介 郑大杨志坚教授老师教学理念】的相关信息,考生在备考过程中想要了解【报名要求,考试大纲,院校排名,热门专业,报考人数,职业规划,免费电子版复习资料,复试调剂】,可以在右侧窗口留言,会有老师一对一为大家答疑解惑,助力各位考生顺利进入理想院校。