考研导师的重要性在于他们能够帮助考生提高学术水平,同时还能够帮助考生提高综合素质和人生规划能力。一个好的考研导师能够为考生的未来发展提供有力的支持和指导。天任考研小编已经整理好【郑州大学数学与统计学院硕导郭瑞晗简介 郑大郭瑞晗老师学术成果】的内容,一起来看看吧!
Ruihan GuoSchool of Mathematics and Statistics
Zhengzhou University
Zhengzhou, Henan 450000, China
E-mail:rguo@zzu.edu.cn
EducationB.S. in Department of Mathematics, China University of Petroleum, June 2009.
Ph.D in School of Mathematical Sciences, University of Science and Technology of China, June 2014, Advisor: Yan Xu.
List of Publications
R. Guo and Y. Xu,Efficient Solvers of Discontinuous Galerkin Discretization for the Cahn-Hilliard Equations,Journal of Scientific Computing,58(2014),pp.380-408.
R. Guo, Y. Xia and Y. Xu,An efficient fully-discrete local discontinuous Galerkin method for the Cahn-Hilliard-Hele-Shaw system,Journal of Computational Physics,264(2014),pp.23-40.
R. Guo and Y. Xu,Fast solver for the local discontinuous Galerkin discretization of the KdV type equations,Communications in Computational Physics,17(2015),pp.424-457.
R. Guo, Y. Xu and Z. Xu,Local discontinuous Galerkin methods for the functionalized Cahn-Hilliard equation,Journal of Scientific Computing,63(2015),pp.913-937.
R. Guo and Y. Xu,An efficient, unconditionally energy stable local discontinuous Galerkin scheme for the Cahn-Hilliard-Brinkman system,Journal of Computational Physics,298(2015),pp.387-405.
F. Zhang, Y. Xu, F. Chen and R. Guo,Interior Penalty Discontinuous Galerkin Based Isogeometric Analysis for Allen-Cahn Equations on Surfaces,Communications in Computational Physics,18(2015),pp.1380-1416.
R. Guo, L. Ji and Y. Xu,High order local discontinuous Galerkin methods for the Allen-Cahn equation: analysis and simulation,Journal of Computational Mathematics,34(2016),pp.135-158.
R. Guo and Y. Xu,Local discontinuous Galerkin method and high order semi-implicit scheme for the phase field crystal equation,SIAM Journal on Scientific Computing,38(2016),pp.A105-A127.
R. Guo, F. Filbet and Y. Xu,Efficient high order semi-implicit time discretization and local discontinuous Galerkin methods for highly nonlinear PDEs,Journal of Scientific Computing,68(2016),pp.1029-1054.
Current Research InterestsNumerical solutions of Cahn-Hilliard-Navier-Stokes equationusing local discontinuous Galerkin (LDG) methods
Numerical solutions of kinetic equations using LDG methods
Numerical solutions of phase field models using LDG methods and convex splitting schemes
High order implicit time integration method for phase field models and other high order derivative nonlinear PDEs
Time-adaptive LDG methods for phase field problems
Efficient solvers for linear and nonlinear equations, such as the multigrid method
以上是天任考研为考生整理【郑州大学数学与统计学院硕导郭瑞晗简介 郑大郭瑞晗老师学术成果】的相关信息,考生在备考过程中想要了解【报名要求,考试大纲,院校排名,热门专业,报考人数,职业规划,免费电子版复习资料,复试调剂】,可以在右侧窗口留言,会有老师一对一为大家答疑解惑,助力各位考生顺利进入理想院校。