十九年专注考研辅导
因为专注,所以出色

0371-60904200 全国咨询热线服务
您所在的位置: 首页 > 考研资讯 > 考试大纲 > 正文
考研资讯

2020年东北电力大学硕士生复变函数复试大纲

来源:天任考研  |  更新时间:2020-05-16 16:55:28  |  关键词:

  •  
  •  
  •  

2020年东北电力大学硕士生复变函数复试大纲

“复变函数”考试大纲

一、考试的学科范围

复变函数课程的考试范围包括:复数与复变函数,解析函数,复变函数的积分,解析函数的幂级数表示,解析函数的洛朗展式与孤立奇点,留数定理这六部分内容。

二、评价目标

主要考查考生对复变函数课程的基础理论、基本知识掌握和运用的情况,要求考生应掌握以下有关知识:

1.复数与复变函数:掌握复数的向量表示与极坐标表示。能熟练地运用代数、三角、指数表示法进行复数的运算。了解复变函数的极限与连续性的定义和求法。

2.解析函数:掌握解析函数的定义。会利用柯西-黎曼方程判断函数的可导性和解析性。理解几个基本的初等函数的定义。

3.复变函数的积分:理解复变函数积分的定义。会利用积分与道路的无关性求积分。掌握柯西积分定理,会用柯西积分定理求积分。掌握柯西积分公式及其推论,会用柯西积分公式求积分。

4.解析函数的幂级数表示:会判断幂级数的敛散性,会求幂级数的收敛半径,掌握幂级数和函数的性质;掌握一些初等函数的泰勒展开式;理解解析函数零点的孤立性,性定理,最大模原理。

5.解析函数的洛朗展式与孤立奇点:理解洛朗级数的概念,会利用间接法将函数进行洛朗展开。掌握零点与孤立奇点的定义,会判断孤立奇点的类型。

6.留数定理:理解留数定理,会利用留数定理求复积分。会利用留数定理求实积分。

三、试题主要类型

1. 答题时间:60分钟

2. 复变函数试题类型:计算题

四、考查要点

(一)复数的表示法和基本运算

1.代数、指数、三角表示法;

2.代数运算,乘方、开方运算。

(二)解析函数的判断

1.解析函数的定义;

2.柯西-黎曼方程;

3.初等函数的计算。

(三)积分的计算

1.利用积分与道路的无关性求积分,掌握柯西积分公式及其推论;

2.用柯西积分定理求积分;

3.会用柯西积分公式求积分;

4.利用留数定理求复积分、实积分。

(四)展为级数|

1.解析函数的幂级数展式;

2.解析函数的洛朗展开。

五、主要参考书目

1. 钟玉泉编,复变函数论(第四版),北京:高等教育出版社,2013年.

2. 西安交大的高数教研室编,复变函数,北京:高等教育出版社,2011年.


免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。邮箱:zzqihangpx@163.com 电话:0371-60903400

天任考研微信群

扫码加入2026考研群
获取考研咨询一对一服务


热报课程

报考信息


备考指南


报名咨询电话:0371-60904200
Copyright©2006-2020  郑州市天任教育科技有限公司 豫ICP备2024092498号

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。电话:0371-60904200