十九年专注考研辅导
因为专注,所以出色

0371-60904200 全国咨询热线服务
您所在的位置: 首页 > 考研资讯 > 考试大纲 > 正文
考研资讯

2020年大连交通大学硕士研究生招生初试大纲-814数学分析

来源:天任考研  |  更新时间:2020-05-21 11:38:04  |  关键词:

  •  
  •  
  •  

2020年大连交通大学硕士研究生招生初试大纲-814数学分析


2020年硕士研究生招生考试初试考试大纲

科目代码:814

科目名称:数学分析

适用专业:数学类各专业

考试时间:3小时

考试方式:笔试

总  分:150分

考试范围:

一、函数、极限与连续

1.掌握收敛数列的性质及数列极限的存在条件(单调有界数列必有极限与夹逼定理)。

2.掌握函数极限的性质与函数极限的存在条件;熟练掌握两个重要极限,会用无穷大与无穷小处理极限问题。

3.理解无穷小与无穷大的概念,熟练掌握无穷小比较的定义与求解。

4.理解连续函数的概念,掌握闭区间上连续函数的性质;了解一致连续的概念。

二、一元函数微分学

1.理解导数的概念,熟练掌握各种求导的运算;理解微分的概念,理解高阶导数的概念。

2.掌握三个微分中值定理;熟练掌握罗必达法则;掌握带有两种余项的泰勒公式,熟练掌握常用的几个函数的展开式、运用导数来判断函数的单调、凹凸等性质、函数极值的判别和函数最大(小)值的求法。

三、一元函数积分学

1.理解不定积分的概念,熟练掌握基本初等函数的不定积分、换元积分法与分部积分法;了解有理函数、简单的无理函数与三角有理函数的不定积分。

2.理解定积分的概念;理解可积准则;了解常用的可积函数类与定积分的性质;理解变限定积分的概念与原函数存在定理。熟练掌握计算定积分的牛顿—莱布尼兹公式、换元公式和分部公式。

3.掌握用定积分计算平面图形的面积、旋转体的体积与平面曲线的弧长。

四、多元函数微分学

1.理解多元函数的概念;掌握偏导数与全微分的概念。

2. 掌握多元复合函数的偏导数与全微分计算。

3.了解隐含数的存在性条件与结论;熟练掌握隐函数的微分法。

4. 掌握偏导数的几何应用与二元极值的求法。

五、多元函数积分学

1.理解重积分的概念,掌握二重积分与三重积分的计算。

2.理解曲线、曲面积分的定义与计算,掌握格林公式、高斯公式、奥高公式。

3.了解多元积分学的简单应用。

六、无穷级数

1.掌握判别正项级数敛散性的各种方法—比较判别法,比式判别法,根式判别法和积分判别法;理解收敛级数、绝对收敛级数与条件收敛级数的关系;掌握交错级数的莱布尼茨判别法。

2.理解幂级数作为特殊的函数项级数和一般函数项级数相同的性质,会求幂级数的收敛半径和收敛范围;掌握泰勒级数和麦克劳林展开公式,五种基本初等函数的幂级数展开。

3.了解付氏级数的两种展开式。

七、反常积分与参变量积分

1.了解反常积分,无穷积分,瑕积分的概念、性质及判别法。

2.掌握反常积分与含参变量积分的计算。

样 题:

一、已知 在 处连续,求 范围。(10分)

二、讨论函数 在 处的可导性。(10分)

三、设 ,求 。(10分)

四、已知 在xoy平面内是某一函数 的全微分,求 。(10分)

五、求曲线 在点 处的切线与法平面方程。(10分)

六、计算 ,其中 是圆周 取正向。(10分)

七、求幂级数 的和函数,其中 。(10分)

八、计算 ,其中 是抛物面 的外侧。(10分)

九、 在 上一阶可微,且 , 在 上单调递减,

证明: 亦在 上单调递减。(10分)

十、计算 。(10分)

十一、计算 。(10分)

十二、证明函数项级数 在区间R上一致收敛。(10分)

十三、证明 ( )一致收敛。(10分)

十四、判断级数 的敛散性。 (10分)

十五、验证函数 在区间 上一致连续。(10分)

参考书目

刘玉琏等.数学分析讲义.高等教育出版社,2019.第六版

常庚哲,史济怀.数学分析教程.中国科学技术大学出版社,2016.第五版


免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。邮箱:zzqihangpx@163.com 电话:0371-60903400

天任考研微信群

扫码加入2026考研群
获取考研咨询一对一服务


热报课程

报考信息


备考指南


报名咨询电话:0371-60904200
Copyright©2006-2020  郑州市天任教育科技有限公司 豫ICP备2024092498号

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。电话:0371-60904200